Complex moment-based method with nonlinear transformation for computing partial singular triplets

Akira Imakura¹ and Tetsuya Sakurai¹

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan {imakura,sakurai}@cs.tsukuba.ac.jp

Abstract

Given a rectangular matrix $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, let

$$A = U\Sigma V^{\mathrm{T}} = \sum_{i=1}^{n} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\mathrm{T}}$$

be a singular value decomposition of A, where σ_i are singular values and u_i and v_i are the corresponding left and right singular vectors, respectively, and $U = [u_1, u_2, \ldots, u_n], V = [v_1, v_2, \ldots, v_n]$ and $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n)$. To compute partial singular triplets specifically corresponding to the larger part of singular values, there are several projection-type methods such as Golub-Kahan-Lanczos method, Jacobi-Davidson type method and randomized SVD algorithm.

This study considers computing partial singular triplets corresponding to the singular values in some interval,

$$(\sigma_i, \boldsymbol{u}_i, \boldsymbol{v}_i), \quad \sigma_i \in \Omega := [a, b],$$
 (1)

where $0 \leq a < b$. One of the simplest ideas to compute (1) is to apply some eigensolver for solving the corresponding symmetric eigenvalue problems of $A^{T}A$ or AA^{T} . However, this simple strategy does not work well in some situation due to the numerical instability.

Based on the concept of the complex moment-based eigensolvers [1, 2], in this study, we propose a novel complex moment-based method to compute partial singular triplets (1). Based on the concept of the complex moment-based parallel eigensolvers, now, we have the following theorem.

Theorem 1. Let $L, M \in \mathbb{N}_+$ be the input parameters and $V_{\text{in}} \in \mathbb{R}^{n \times L}$ be an input matrix. We define $S \in \mathbb{R}^{n \times LM}$ and $S_k \in \mathbb{R}^{n \times L}$ as follows:

$$S := [S_0, S_1, \dots, S_{M-1}], \quad S_k := \frac{1}{2\pi i} \oint_{\Gamma} z^k (zI - A^T A)^{-1} V_{\text{in}} dz, \qquad (2)$$

where Γ is a positively oriented Jordan curve around $[a^2, b^2]$. Then, the subspaces $\mathcal{R}(AS)$ and $\mathcal{R}(S)$ are equivalent to subspaces with respect to the left and right

A. Imakura and T. Sakurai

singular vectors corresponding to the singular values in a given interval $\Omega = [a, b]$, i.e.,

$$\mathcal{R}(AS) = \operatorname{span}\{\boldsymbol{u}_i | \sigma_i \in \Omega = [a, b]\}, \quad and \quad \mathcal{R}(S) = \operatorname{span}\{\boldsymbol{v}_i | \sigma_i \in \Omega = [a, b]\},$$

if and only if rank(S) = t, where t is the number of target singular values.

This theorem denotes that the singular triplets corresponding to $\sigma_i \in [a, b]$ (1) can be obtained by some projection method with $\mathcal{R}(AS)$ and/or $\mathcal{R}(S)$ constructed by contour integral (2). In practice, the contour integral (2) is approximated by a numerical integration rule such as the N-point trapezoidal rule, as follows:

$$\widehat{S} := [\widehat{S}_0, \widehat{S}_1, \dots, \widehat{S}_{M-1}], \quad \widehat{S}_k := \sum_{j=1}^N \omega_j z_j^k (z_j I - A^{\mathrm{T}} A)^{-1} V_{\mathrm{in}},$$

where $(z_j, \omega_j), j = 1, 2, ..., N$, are the quadrature points and the corresponding weights, respectively. Then, the approximate singular triplets are computed by a projection method.

From the analysis of error bounds, we also show that the accuracy of the proposed method can be improved by a nonlinear transformation. Details of the proposed method and numerical results will be reported in the presentation.

The present study is supported in part by JSPS KAKENHI (Nos. 19KK0255 and 21H03451).

Keywords: Partial singular triplets, Complex moment-based method, nonlinear transformation

References

- T. Sakurai, H. Sugiura: A projection method for generalized eigenvalue problems using numerical integration, Journal of Computational and Applied Mathematics, 159:1 (2003), 119–128.
- A. Imakura, L. Du, T. Sakurai: Relationships among contour integral-based methods for solving generalized eigenvalue problems, Japan Journal of Industrial and Applied Mathematics, 33:3 (2016), 721–750.