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Abstract

As is well known, Marcinkiewicz–Zygmund type inequalities are widely used in
the study of the convergence of various approximation processes [6, 4, 1].

The classical inequalities were proved for trigonometric polynomials in 1937,
whereas the algebraic case is more difficult and the first results were obtained
by R. Askey in 1973 [2, 5]. In fact, the direct inequality(
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, 1 ≤ p <∞ ,

holds for any polynomial Plm of degree lm (l fixed integer) with C depending only
on p, ∆xk = xk+1 − xk, xk arbitrary arcsin distributed nodes and u a doubling
weight [3], but the converse inequality requires more restrictive assumptions.

In this talk we discuss the case of non-doubling weights, namely exponential
weights on bounded or unbounded intervals of the real line.
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