Research papers:
- M.M. Spalević: Modified anti-Gaussian quadrature formulae of Chebyshev type. Numerical Algorithms (2023), accepted for publication.
- J. Tomanović: Gauss-type quadrature rules with respect to the external zeros of the integrand . Submitted 2022.
- A.V. Pejčev: A note on „Error bounds of KM Gaussian quadrature formulae with Legendre weight function for analytic integrands“. Accepted for publication 2023, Electronic Transactions on Numerical
Analysis (ETNA).
- L. Fermo, L. Reichel, G. Rodriguez, M.M. Spalević: Averaged Nystrom interpolants for the solution of Fredholm integral equations of the second kind. Submitted 2022.
- D.Lj. Đukić, R.M. Mutavdžić Djukic, L. Reichel, M.M. Spalević: Optimal averaged Pade approximants. Submitted 2022.
- N. Z. Petrović, M.S. Pranić, M.P. Stanić, T.V. Tomović Mladenović: The set of anti-Gaussian quadrature rules for the optimal set of quadrature rules in Borges' sense. Submitted 2022.
- D.Lj. Đukić, R.M. Mutavdžić Đukic, L. Reichel, M.M. Spalević, Weighted averaged Gaussian quadrature rules for modified Chebyshev measures, Applied Numerical Mathematics,
2023, ISSN 0168-9274, https://doi.org/10.1016/j.apnum.2023.05.014
- D.Lj. Đukić, R.M. Mutavdžić Djukic, L. Reichel, M.M. Spalević: Internality of averaged Gauss quadrature rules for certain modifications of Jacobi measures (2023). In progress.
- D.Lj. Đukić: Orthogonal polynomials with respect to the Abel weight function and their properties (2023). In progress.
- J. Tomanović: Gauss-type quadrature rules for variable-sign weight functions (2023). Submitted 2023.
- J. Tomanović: Incorporating the external zeros and poles of the integrand into Gauss-type quadrature rules (2023). Appl. Numer. Math., in
press. https://doi.org/10.1016/j.apnum.2023.05.001
Monographs:
- G.V. Milovanović, M.M. Spalević, and M.S. Pranić: Quadrature formulae with multiple nodes, World Scientific Publ. Co., Singapore – New Jersey – London – Hong Kong, 2022, 400 pp. In preparation.